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The objective of this MURI grant was to develop large area heteroepitaxial growth
using compliant substrates by molecular beam epitaxy. The MURI grant was led by
Columbia Univeristy (Prof. Wen 1. Wang), with participants including Prof April S.
Brown at Georgia Tech, Prof Lester F. Eastman at Cornell University, and Prof. T.S.
Kuan at SUNY Albany.

Technical Achievements

Columbia University achieved

In situ relaxed SiGe epitaxial layers with record low threading
dislocation densities grown on compliant Si-on-insulator substrates

High quality relaxed Siy¢Geo 4 films as thick as 1.0 um have been achieved as grown on
silicon-on-insulator (SOI) substrates with 200 A Si(100)-oriented compliant substrates.
This represents the thickest relaxed layers grown by this technique. A greater than five
order of magnitude reduction in threading dislocation density was achieved by compliant
growth compared to growth on unmodified Si (100) substrates. Additionally, for the first
time, we show that it is not necessary to separate the growth and relaxation processes, and
relaxation during growth is governed by the nature of the compliant substrate structure
that causes dislocations to terminate at the unique crystalline-amorphous SiO, interface.
Results indicate that utilizing SOI as a compliant substrate which is effective in producing
high quality Si,.Ge, films can be extended to other films, where film relaxation ~via
dislocation nucleation and growth cannot be conveniently separated from the synthesis
method.

Columbia University achievéd nearly dislocation-free SiGe epilayers by MBE growth on
the SOI compliant substrates. There is not a single dislocation was observed in the
SiosGeo film grown on SOI substrate at Columbia University. All the dislocations are
confined in the thin Si layer of the SOI substrate, indicating the net dislocation image force
was toward the SOI substrate. The compliant —substrate properties are clearly
demonstrated by this TEM result. At least five orders of dislocation density improvement
in the Sip ¢Geo 4 relaxed film has been achieved by using SOI substrate insigad of straight Si
substrate. To the best of our knowledge, it is the first time achieving this high quality
relaxed SiosGeos films as thick as 1.0 pm directly on SOL A key feature here is that
relaxation was achieved during film growth ~in situ! and not separately postgrowth
annealing!. Results indicate that the SOI substrate with a 200 A top Si layer is compliant
at all practical temperatures, and compliancy is not necessarily related to the SOI
fabrication technique or the nature of the Si/SiO2 interface. The effectiveness of the as-
grown SOI technique in achieving device-quality relaxed SiGe films is, thus, clearly
demonstrated.
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Columbia University developed

the first semi-quantitative theory for the mechanism of the reduction of
dislocation density in epilayers grown on compliant substrates, in
collaboration with SUNY Albany

A simplified model of the mechanism of dislocation reduction in epilayers grown on
compliant substrates by molecular-beam epitaxy has been developed based on the
dislocation theory and detailed experiments. Theoretical resuits calculated with this model
indicate that up to 100-fold defect reduction can be achieved by using a silicon-on-
insulator compliant substrate for the thick epilayer growth as compared to that of using a
conventional Si substrate. The advantage of growing thick epilayers on compliant
substrates can be predicted quantitatively. The mechanism of a nearly dislocation-free SiGe
alloy, as well as GaAs epilayers grown on silicon-on-insulator compliant substrates, is
explained and the dislocation density calculated with this model is in good agreement with
our experimental results.

With these quantitative expressions, our model can estimate the number of dislocations
attracted and annihilated at the epilayer/Si/oxide interfaces and the associated strain
relaxation accomplished. The model also considers the tensile stress in the oxide layer
caused by the thermal mismatch at a high growth temperature, which provides another
driving force for dislocations to slip toward the epilayer/Si/oxide interfaces. Using this
model, the dislocation densities were calculated for the SiGe eplayers (with 2% lattice
mismatch to Si) with different thicknesses of 10, 100, and 1000 nm grown on SOI
compliant substrates. Table I shows the calculated results. For comparison, the calculated
results for other epilayers grown on conventional Si substrates are also shown in Table L.
It suggests that 100-fold defect reduction can be achieved by using a SOI compliant
substrate as compared to that of using a conventional Si substrate for epitaxial growth.
The model estimates the dislocation density in the SiGe epilayer with thickness of 1 pm
grown on a SOI compliant substrate (with the thin Si membrane of 100 nm) can be as low
as 16 per square centimeter, which is much less than the dislocation density of 3000 per
square centimeter in the SiGe epilayer with the same thickness grown on the Si
conventional substrate as indicated in Table I. In our experiment of SiGe compliant
growth, a level of 5x10%cm?” dislocation density was observed near the SiGe/SOI interface
by TEM. These dislocations remain close to the edges of SiGe/Si/SiO, interfaces due to
attraction by the image force from the oxide layer. It is clear that SOI compliant substrates
are effective in producing high-quality SiGe epilayers. With this model, the mechanism of
the reduction of the dislocation density can be explained for the thick SiGe and GaAs
epilayers with very low dislocation density grown on SOI compliant substrates. The
advantage of growing thick epilayers on compliant substrates can be predicted
quantitatively. The theoretical data calculated with this model are in good agreement with
previous and our experimental findings.
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Columbia University demonstrated

the highest two-dimensional electron mobility in AlGaN/GaN
heterostructures grown on sapphire substrates entirely grown by
molecular-beam epitaxy

High-quality AlGaN/GaN heterostructures have been grown by ammonia gas-source
molecular-beam epitaxy on sapphire substrates. Incorporation of a low-temperature-
grown AlN interlayer during the growth of a thick GaN buffer is shown to substantially
increase the mobility of the piezoelectrically induced two-dimensional electron gas
(2DEG) in unintentionally doped AlGaN/GaN heterostructures. For an optimized AIN
interlayer thickness of 30 nm, electron mobilities as high as 1500 cm*V s at room
temperature, 10 310 cm*/V s at 77 K, and 12 000 cm®/V s at 0.3 K were obtained with
sheet densities of 9x10'* cm™ and 6x10" cm™ at room temperature and 77 K,
respectively. The 2DEG was confirmed by strong and well-resolved Shubnikov—de Haas
oscillations starting at 3.0 T. Photoluminescence measurements and atomic force
microscopy revealed that the densities of native donors and grain boundaries were
effectively reduced in the AlGaN/GaN heterostructures incorporating low-temperature-
grown AN interlayers.

By inserting a low-temperature-grown AIN interlayer during the growth of a thick GaN
buffer, the overall quality of the AIGaN/GaN heterostructures was significantly improved.
The 2D electron mobilities for the structures were as high as 1500, 10 310, and 12 000
cm?/V s at room temperature, 77 K, and 0.3 K, respectively. The 2DEG was confirmed by
strong and well-resolved Shubnikov—de Haas oscillations. Photoluminescence
measurements and atomic force microscopy revealed that native point-defect densities and
grain boundaries were effectively reduced in the AIGaN/GaN heterostructures
incorporating AIN interlayers.

The effect of the LTG AIN layer thickness on the Hall mobilities of the AlGaN/GaN
heterostructures was also investigated. The Hall mobility was measured to be as highas 10
310 cm”/V s at 77 K and 12 000 cm¥/V s at 03 K, representing the best results for growth
of AlGaN/GaN heterostructures directly on sapphire by a single growth process. The
electron sheet densities for these samples were in the mid-10"> cm™ range, which are in
good agreement with the calculated values for Aly,Gay ¢N/GaN heterostructures based on
a model in which only the piezoelectric effect was considered.
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Columbia University demonstrated

the first use of Sb as a surfactant to improve the growth of GaN by
molecular beam epitaxy

In this work, the effect of Sb on the molecular beam epitaxy (MBE) growth of GaN and its
optical properties was investigated. One monolayer Sb predeposition before GaN growth
and different Sb beam equivalent pressures applied throughout the GaN growth were used
to study the effect of Sb on GaN growth by ammonia gas-source MBE. The presence of
Sb remarkably enhanced two-dimensional growth as evidenced by in situ reflected high
energy electron diffraction (RHEED). RHEED patterns became streaky much more
rapidly when GaN was grown in the presence of Sb than that without Sb, indicating that
Sb can act as an effective surfactant to smooth the growth front of GaN and enhance the
layer-by-layer growth mode for the MBE growth of GaN. The full width at half maximum
of the (0004) x-ray diffraction rocking curve measured from the GaN epilayer grown with
one monolayer Sb predeposited as surfactant was as narrow as 70 arcsec. In the
photoluminescence measurement, besides the characteristic near band edge excitonic
emissions, new transitions related to Sb-isovalent traps were observed from GaN samples
grown with Sb, whose zero phonon line was located at 3.27 eV with phonon replicas on
the lower energy side. Intensities of the emissions related to Sb-isovalent traps increased
with Sb partial pressures applied during GaN growth.

For the GaN epilayer grown with one monolayer Sb predeposited before GaN growth as
surfactant, the full width at half maximum (FWHM) was 70 arcsec and was much
narrower than that of GaN grown without Sb, indicating superior crystallinity. Our results




clearly suggest that Sb can act as an effective surfactant for GaN growth. Yellow band
emission related to deep-level impurities and defects was absent. Excitonic emission (EE)
at 3.47 eV and its weak phonon replica at 3.37 eV can be clearly identified. A significant
increase of band edge emission intensity was exhibited.

Growth of GaN on sapphire was dramatically improved with one monolayer Sb which was
predeposited as surfactant. RHEED patterns became streaky much more rapidly when
GaN was grown in the presence of Sb than that without Sb, indicating that Sb can act as an
effective surfactant to smooth the growth front of GaN and enhance the layer-by-layer
growth mode for MBE growth of GaN. The FWHM of the (0004) XRD rocking curve of
the GaN epilayer grown with one monolayer Sb as surfactant was as narrow as 70 arcsec.
The influence of Sb on the photoluminescence of GaN was investigated. Transitions
related to Sb isovalent traps were observed and their intensities increased with Sb beam
flux.

(@) ®

Comparison of GaN RHEED patterns: (a) 20 nm GaN overgrowth with Sb as surfactant
and (b) 20 nm GaN overgrowth without Sb.
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Z.Yang, J. Alperin, W. I. Wang, S. S. Iyer, T. S. Kuan, and F. Semendy. “In situ relaxed
Si1«Gex epitaxial layers with low threading dislocation densities grown on compliant Si-
on-insulator substrates”. J. Vac. Sci. Technol. B 16, 1489 (1998)

C. W. Pei, J. B. Héroux, J. Sweet, W. L Wang, J. Chen, and M. F. Chang. “High quality
GaAs grown on Si-on-insulator compliant substrates “J. Vac. Sci. Technol. B 20, 1196
(2002)

L. K. Li, B. Turk, W. I. Wang, S. Syed, D. Simonian, and H. L. Stormer. “High electron
mobility AlGaN/GaN heterostructures grown on sapphire substrates by molecular-beam
epitaxy” Appl. Phys. Lett. 76, 742 (2000)

C. W. Pei, B. Turk, W. I. Wang, and T. S. Kuan. “Mechanism of the reduction of
dislocation density in epilayers grown on compliant substrates” J. Appl. Phys. 90, 5959
(2001)
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C. W. Pei, B. Turk, J. B. Héroux, and W. I. Wang. “GaN grown by molecular beam
epitaxy with antimony as surfactant” J. Vac. Sci. Technol. B 19, 1426 (2001)

M. L. Seaford, D. H. Tomich, K. G. Eyink, L. Grazulis, K. Mahalingam, Z. Yang and W.
L. Wang . “Comparison of GaAs Grown on Standard Si (511) and Compliant SOI (511)”
Journal of Electronic Materials, 29, 906 (2000)

Cornell Univ'ersity

Theoretical and Experimental Studies of Heteroepitaxy on Compliant
Substrates

As a part of the MURI-compliant substrates, successful fabrication of p-n junctions by
wafer bonding was demonstrated by Cornell University. These curves were not close to
ideal. This can be attributed to amorphorization of bonded interface and/or presence of
oxide at surface, and also surface leakage, given the large surface area of samples. The
role of dislocations in raising the barrier height across the bonded interface has been
discussed. AlGaN/GaN structures on the Lithium Gallate substrates were processed. Some
problems were encountered in processing.

Compliant Substrates: The ever increasing use of various compound semiconductor
materials for device fabrication has imposed great challenge on the semiconductor industry
as there are very few substrates available. The composition of the materials grown on
these substrates is often limited by the lattice-mismatch.

Introduction: One of the potential applications of the compliant substrates and the
bonding interface is to form electrical junctions across the interface. Cornell University
looked at the electrical behavior of the bonded interface, with and without the affect of
twist and screw dislocations at the interface. When the wafers are bonded with a mismatch
along the planar interface(twist bonding), twist dislocations are formed. An array of screw
dislocations is formed on the interface which helps accommodate the strain in lattice
mismatched interfaces. When an off-cut wafer is bonded to a normal wafer, a series of
edge dislocations is formed on the interface. The density of dislocations in each case is
given by:

Wafer bonding of off-cut wafers
Distance between dislocations

d=b cos (8) / (1-cos (0))
Where, b=Burgers vector

6=angle of off-cut

Twist wafer bonding of wafers

Distance between dislocations
d=b /sin (8)
Where, b=Burgers vector
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6=angle of twist bond

For the dislocations in diamond cubic lattice, 60-degree dislocation has a row of atoms
with a dangling bond along the edge of the half-plane.

Both 30-degree and 90 degree partials form dislocations energy levels.

These partials charge up in edge dislocations and impede the current transport across the
bonded interface. ,

Bonding: As a part of the MURI - compliant substrates, a bonding machine was
fabricated at Cornell University. This wafer bonding system was fabricated to provide a
controlled atmosphere and elevated temperatures required for wafer bonding. The bonding
machine was designed to have a process chamber free of contaminants, hot zone capable
of up to 1000 C, compatibility with clean room environments and upgradeability to larger
wafer sizes.

Experiments: Cornell University studied the bonding behavior of GaAs wafers. Our aim
was to obtain a bonding interface good enough to fabricate p-n junctions from it. The
semiconductors Cornell University tried to bond with the above mentioned apparatus were
27 GaAs wafers. The wafers were solvent cleaned in an ultrasonic bath. These cleaned
wafers were loaded immediately into the UHV chamber in the MBE machine.

Several experiments were undertaken. These included bonding of p and n doped wafers,
and, p and n doped wafers and n-n wafers where one of the wafers (n-type) is off-cut by
10 degrees.

Cornell University grew 1um thick layer of 1e18 doped n-GaAs and then 5e17 doped n-
GaAs on a 2” n-GaAs wafer by Molecular beam epitaxy. (Correspondingly 1e18 p-GaAs
and then 5e17 p-GaAs on 2” p-GaAs wafer). These wafers were unloaded from the UHV
chamber and immediately put together for Vanderwaals’s bonding. This was done to avoid
formation of oxide at the interface which is detrimental to any application related to
current transport. These vanderwaal’s bonded wafers were loaded into the Bonding
Machine. The bonding chamber was purged with N, gas for 15 minutes. The wafers were

bonded in a #, atmosphere. The pressure applied was 50psi and the temperature was

500C.

The bonded wafers were cut into 2mil X 2mil square pieces. The current
measurements were done using HP4145 setup.
Results: Cornell University was able to successfully bond 2” GaAs wafers. When the
wafers are bonded together defects may be introduced at the bonding interface by the
oxides or the particulates. Comnell University was usually able to avoid these by
immediately bonding the wafer after taking out from the UHV Molecular Epitaxy
Chamber. The bonded wafers were observed through the long wavelength IR camera for
defects and/or air-bubbles
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Bonded GaAs-GaAs wafers viewed through IR camera.

The bonded interface was also observed by Transmission Electron Microscopy. No
interface air-bubbles were observed.

Transmission Electron micrograph of bonded interface
Electrical Results: The bonded wafers were cut into 2 mil X 2 mil pieces by a diamond
saw. The fact that these wafers survived sawing demonstrates the bonding strength. The
ohmic contacts were made by:
n type: Ni/Au-Ge/Ag/Au
100/1000/1000/1500 A

p type : T/Au

400/1000 A
The I-V curves were measured by the HP4145 setup using needle probes. The current
formula used to explain the results is:

B _¢
J= I*e (nKT) )( ) —R%

*
Where / = saturation current
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V' = applied voltage
R ¢= surface resistance

¢ g = barrier height

n = ideality factor
Cornell University expeeted surface leakage to play an important role in determination of
currents given the large area of the p-n junctions.
The results from the following three cases were analyzed:
Twist Wafer Bonding: p+-n+ GaAs wafers
Off-cut wafer bonding: p+-n+ GaAs wafers
Off-cut wafer bonding: n+-n+ GaAs wafers

Cornell University observed that the off cut bonded wafers have significantly higher value
of barrier thickness. The high value of ideality factor can also be explained by
amorphousness of interface and/or oxides, making n > 1.

IV curves for bonded interfaces
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B

4
-4.00E-03 J
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I-V curves for twist and off-cut bonded interfaces

Conclusions: Cornell University observed higher barrier in the off cut bonded wafers.
The charging of dislocations raises the local barrier required by the electrons to go
through the interface. Hence an enhanced barrier to current transport is observed, as
shown in the figure representing the model.

Lithium Gallate
Compliant universal substrates are the materials designed to accommodate high
lattice mismatch and allow fabrication of devices from new materials. One of these
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materials is Lithium Gallate (LiGaOx). Epi-layers with GaN/AIGaN heterostructure have
been successfully grown on these substrates.

Processing: The GaN/AlGaN on Lithium Gallate samples were processed at the Cornell
Nanofabrication Facility. The samples showed good uniformity in properties and yielded
good ohmic contacts. The contact resistance and sheet resistance values were 0.65
ohms/mn and 400 ohms/sq. Following problems were observed during processing: Lithium
Gallate substrate tends to stick to hot surfaces with temperature as low as 170 C. This
made processing difficult and may contribute to failures by introducing micro-cracks.
Results: Two samples were processed. First sample displayed an unexplained failure along
the gate when the gate and drain biases are applied. The following reason could be
attributed to the failure:

Something is wrong in the epi.

The above reason can cause failure by creating a short on the surface. The second sample
had a micro-crack in it at the beginning and failed during rapid thermal annealing for
ohmic contacts by expansion of crack.

Conclusions: Lithium Gallate is an interesting substrate for accommodating high lattice
mismatch associated with compound semiconductor growth. Further comments on the
devices made on these substrates can be made on further processing (2 samples in
process).

Destruction of epi layer along the gate on application of bias.

Georgia Tech pursued research as part of the MURI effort. The PI at Tech was
Professor April S. Brown. Key accomplishments include:

First use of bonded substrate removal for compliant substrate fabrication

First use of metal-bonds for compliant substrates

Exploitation of new concept- strain-modulated epitaxy

First use of LGO substrate for GaN substrate removel

GaN material improvements enabled by LGO substrate

First demonstration of GaN devices bonded to Si enabled by bonded substrate removal
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An account of the topics, publications and presentations related to the project are given
below.

The Georgia Tech effort began with work on the use of metal bonds and subtrate removal
to enable compliant substrates. Publications and presentations on this work are:

Carter-Coman, C.A, Bfown, A.S., Jokerst;, NM., Dawson, D.E., Bicknell-Tassius, R.,
Feng, Z.C., Rajkumar, K.C., and Dagnall, G., “Strain Accommodation in Mismatched
Layers by Molecular Beam Epitaxy: Introduction of a New Compliant Substrate
Technology,” Journal of Electronic Materials, 25(7), pp. 1044-1047, October 1996.
Carter-Coman, C., Brown, A.S., and Jokerst, N. M., “Compliant Substrates for Reduction
of Strain Relief in Mismatched Overlayers,” MRS Conference Proceedings, vol. 441, pp.
361-366, Boston, MA, November 1996.

Carter-Coman, C.A., Brown, A.S., and Jokerst, N.M., “Analysis of InGaAs layers on
GaAs compliant substrates by double crystal x-ray diffraction,” Applied Physics Letters,
70 (13), pp. 1754-1756, June 1997.

Carter-Coman, C.A., Bicknell-Tassius, R. Benz, R., Brown, A.S., and Jokerst, N.,
“Analysis of GaAs Substrate Removal Etching with Citric Acid: H,O; and NH,OH: H,0,
for Application to GaAs Compliant Substrates,” Journal of the Electrochemical Society,
144, 2, pp. L29-L31, 1997.

Carter-Coman, Carrie, Bicknell-Tassius, Robert, Brown, April S., and Jokerst, Nan Marie,
“Metastability Modeling of Compliant Substrate Critical Thickness using Experimental
Strain Relief Data,” Applied Physics Letters, 71 (10), pp. 1344-1346, 8 September 1997.
Carter-Coman, C., Brown, A.S., and Jokerst, N M, “Compliant Substrate Technology,”
WOCSEMMAD, San Antonio, TX, February 1997.
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